파생상품 20

금리 모델링 #4 short rate modeling

금리 파생상품이란 금리를 기초자산으로 하여 수익이 결정되는 파생상품을 말한다. 대부분 금융공학 교과서들을 보면 금리 파생상품을 설명할 때 다른 기초자산들보다 특별히 더 많은 분량을 할애하는 것을 알 수 있다. 그 이유는 크게 두 가지인데, 1) 금리의 확률과정은 더 복잡하다. 금리는 매크로 변수로서의 성격이 있기 때문에, 단지 기하적 브라운 운동만으로 나타내기 힘들다. 예를 들어 주가는 계속 상승할 수 있지만, 금리는 계속 상승하지 않고 일정 수준이 되면 다시 내려온다. 이를 mean-reverting이라고 한다. 2) 금리는 주가처럼 하나의 값이 아니라, 수익률 '곡선'으로서 존재한다. 기간 구조를 무시한 상태에서 그냥 "금리"라는 것은 존재하지 않는다. 따라서 금리를 추정할 때는 금리 커브 자체를 추..

금리 모델링 #3 스왑션(Swaption)

금리 파생상품이란 금리를 기초자산으로 하여 수익이 결정되는 파생상품을 말한다. 대부분 금융공학 교과서들을 보면 금리 파생상품을 설명할 때 다른 기초자산들보다 특별히 더 많은 분량을 할애하는 것을 알 수 있다. 그 이유는 크게 두 가지인데, 1) 금리의 확률과정은 더 복잡하다. 금리는 매크로 변수로서의 성격이 있기 때문에, 단지 기하적 브라운 운동만으로 나타내기 힘들다. 예를 들어 주가는 계속 상승할 수 있지만, 금리는 계속 상승하지 않고 일정 수준이 되면 다시 내려온다. 이를 mean-reverting이라고 한다. 2) 금리는 주가처럼 하나의 값이 아니라, 수익률 '곡선'으로서 존재한다. 기간 구조를 무시한 상태에서 그냥 "금리"라는 것은 존재하지 않는다. 따라서 금리를 추정할 때는 금리 커브 자체를 추..

금리 모델링 #2 채권 옵션, 캡/플로어

금리 파생상품이란 금리를 기초자산으로 하여 수익이 결정되는 파생상품을 말한다. 대부분 금융공학 교과서들을 보면 금리 파생상품을 설명할 때 다른 기초자산들보다 특별히 더 많은 분량을 할애하는 것을 알 수 있다. 그 이유는 크게 두 가지인데, 1) 금리의 확률과정은 더 복잡하다. 금리는 매크로 변수로서의 성격이 있기 때문에, 단지 기하적 브라운 운동만으로 나타내기 힘들다. 예를 들어 주가는 계속 상승할 수 있지만, 금리는 계속 상승하지 않고 일정 수준이 되면 다시 내려온다. 이를 mean-reverting이라고 한다. 2) 금리는 주가처럼 하나의 값이 아니라, 수익률 '곡선'으로서 존재한다. 기간 구조를 무시한 상태에서 그냥 "금리"라는 것은 존재하지 않는다. 따라서 금리를 추정할 때는 금리 커브 자체를 추..

금리 모델링 #1 ZCB, FRN, FRA, IRS

금리 파생상품이란 금리를 기초자산으로 하여 수익이 결정되는 파생상품을 말한다. 대부분 금융공학 교과서들을 보면 금리 파생상품을 설명할 때 다른 기초자산들보다 특별히 더 많은 분량을 할애하는 것을 알 수 있다. 그 이유는 크게 두 가지인데, 1) 금리의 확률과정은 더 복잡하다. 금리는 매크로 변수로서의 성격이 있기 때문에, 단지 기하적 브라운 운동만으로 나타내기 힘들다. 예를 들어 주가는 계속 상승할 수 있지만, 금리는 계속 상승하지 않고 일정 수준이 되면 다시 내려온다. 이를 mean-reverting이라고 한다. 2) 금리는 주가처럼 하나의 값이 아니라, 수익률 '곡선'으로서 존재한다. 기간 구조를 무시한 상태에서 그냥 "금리"라는 것은 존재하지 않는다. 따라서 금리를 추정할 때는 금리 커브 자체를 추..

파생상품 가치평가 방법론 #9 유한차분법(FDM) 구현하기

이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일 뿐이다. 아래는 책 구매 링크 Options, Futures, and Other Derivatives ISBN-13: 9780136939917 Options, Futures, and Other Derivatives Published 2021 www.pearson.com 이전 글: FDM의 아이디어 파생상품 가치평가 방법론 #8 유한차분법(FDM)의 아이디어 이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일..

파생상품 가치평가 방법론 #8 유한차분법(FDM)의 아이디어

이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일 뿐이다. 아래는 책 구매 링크 Options, Futures, and Other Derivatives ISBN-13: 9780136939917 Options, Futures, and Other Derivatives Published 2021 www.pearson.com 이전 글: LSMC 방법 파생상품 가치평가 방법론 #7 Monte Carlo Simulation (2) LSMC LSMC가 처음 소개된 Longstaff & Schwartz (2001) 논문 LongstaffSchwartzAmericanOptionsLeastSqua..

파생상품 가치평가 방법론 #5 Binomial Tree (2) Backwardation method

이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일 뿐이다. 아래는 책 구매 링크 Options, Futures, and Other Derivatives ISBN-13: 9780136939917 Options, Futures, and Other Derivatives Published 2021 www.pearson.com 이전 편 링크: Binomial Tree (1) 파생상품 가치평가 방법론 #4 Binomial Tree (1) Basic modeling 이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other ..

파생상품 가치평가 방법론 #3 주요 방법론 개요

이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일 뿐이다. 아래는 책 구매 링크 Options, Futures, and Other Derivatives ISBN-13: 9780136939917 Options, Futures, and Other Derivatives Published 2021 www.pearson.com 이전 편 링크: 위험중립적 가치평가 파생상품 가치평가 방법론 #2 위험중립적 가치평가 (Risk-Neutral Valuation) 이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Deri..

파생상품 가치평가 방법론 #2 위험중립적 가치평가 (Risk-Neutral Valuation)

이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일 뿐이다. 아래는 책 구매 링크 Options, Futures, and Other Derivatives ISBN-13: 9780136939917 Options, Futures, and Other Derivatives Published 2021 www.pearson.com 이전 편: 파생상품의 "공정한 가격" 파생상품 가치평가 방법론 #1 파생상품의 "공정한 가격" 이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한..

파생상품 가치평가 방법론 #1 파생상품의 "공정한 가격"

이 시리즈는 파생상품 이론 분야에서 가장 유명한 교재인 Hull(2021)의 "Options, Futures and Other Derivatives (11th)"을 요약한 것일 뿐이다. 아래는 책 구매 링크 https://www.pearson.com/en-us/subject-catalog/p/options-futures-and-other-derivatives/P200000005938/9780136939917 Options, Futures, and Other Derivatives ISBN-13: 9780136939917 Options, Futures, and Other Derivatives Published 2021 www.pearson.com 1. Motivation 가장 단순한 금융상품의 형태인 채권,..