뉴럴넷 3

Deep Learning #3 다양한 CNN: VGGNet, GoogleNet, ResNet

이전 포스팅에서는 CNN의 기본적인 골격을 살펴보았다. 여기서는 CNN의 발전 과정에서 많은 기여를 한 3가지의 대표적인 CNN 모델을 소개한다. [DL] CNN의 개요 1. Computer Vision Computer Vision(CV) 문제는 컴퓨터가 이미지를 잘 이해할 수 있도록 하는 과제를 말한다. 가령 자율주행 자동차가 지금 앞에 있는 것이 사람인지 텅 빈 도로인지를 잘 파악할 수 있도록 seungbeomdo.tistory.com 1. VGG Net 1.1. VGG Net의 개요 VGG Net은 2014년 이미지넷 인식 대회에서 준우승을 한 모델이다. 이전의 뉴럴넷 모델들에 비해 압도적으로 많은 레이어들을 사용해서 Deeper CNN 모델의 시초가 되었다. VGG Net은 레이어의 개수에 따라 ..

Deep Learning #1 딥러닝 기초: 심층신경망의 구조와 간단 코드 실습

1. Deep Neural Net 딥러닝(Deep Learning)이란 인공신경망(Artificial Neural Net)을 훈련해 회귀나 분류 문제 등을 해결하는 것을 말한다. 인공신경망은 심층신경망(Deep Neural Net) 또는 다층퍼셉트론(Multi-Layer Perceptron)이라고도 불린다. 굳이 구분할 필요는 없이 다 같은 개념으로 사용해도 된다고 본다. 심층신경망은 다음의 요소들로 구성된다. 인풋 레이어(Input Layer): 주어진 데이터가 벡터(Vector) 형태로 입력된다. 이를 인풋 벡터(Input Vector)라고도 말하며, 인풋 벡터 그 자체는 심층신경망의 입장에서는 인풋 레이어가 된다. 히든 레이어(Hidden Layer): 인풋 레이어와 아웃풋 사이를 매개하는 레이어...

UNET 구조 구현하기 #1: 데이터 저장하기 ~ 모델 클래스 구현

Pytorch 기반의 딥러닝 모델 구현을 연습해보기. 한요섭님 유튜브 강의에서 다룬 코드들을 꼼꼼하게 리뷰하면서 딥러닝 모델 구현의.. 일종의 메뉴얼을 습득해보려고 한다. hanyoseob 의료데이터 분석 및 인공지능 개발자, 한요섭 입니다 :D 머신러닝/딥러닝, 신호처리, 병렬 컴퓨팅 (CUDA), 블록체인 (Solidity) 그리고 논문작성 꿀팁 등을 공돌이 관점에서 실습을 통해 알아보도록 www.youtube.com 1. 데이터 저장하기 1.1. 라이브러리 임포트 및 데이터 불러오기 #구글 드라이브 마운트 from google.colab import drive drive.mount('/content/drive') #필요한 라이브러리 임포트 import os import numpy as np from..