패널데이터 3

패널 회귀 분석 #3 고정효과 모형 (Fixed Effect)

고정효과 모형의 가정 패널 회귀모형이 다음과 같이 주어졌다. $$Y_{i,t} = \mathsf{X}_{i,t}^{T}\beta + U_{i,t}$$ $$U_{i,t} = \mu_{i} + \epsilon_{i,t}$$ $$\epsilon_{i,t} \sim i.i.d. (0, \sigma_{\epsilon}^{2})$$ $$E(\mu_{i} \epsilon_{i,t}) = 0$$ $$E(X_{i,t}\epsilon_{i,t})=0$$ 이때, OLS 추정량이 모수를 일관적으로 추정하려면 $$E(U_{i,t}\mathsf{X}_{i,t}) = 0$$ 이 조건이 성립하기 위해서는 $$E(\mu_{i}\mathsf{X}_{i,t}) = 0$$ $$E(\epsilon_{i,t}\mathsf{X}_{i,t})=0..

패널 회귀 분석 #2 임의효과 모형 (Random Effect)

임의효과 모형의 가정 패널 회귀모형이 다음과 같이 주어졌다. $$Y_{i,t} = \mathsf{X}_{i,t}^{T}\beta + U_{i,t}$$ $$U_{i,t} = \mu_{i} + \epsilon_{i,t}$$ $$\epsilon_{i,t} \sim i.i.d. (0, \sigma_{\epsilon}^{2})$$ $$E(\mu_{i} \epsilon_{i,t}) = 0$$ $$E(X_{i,t}\epsilon_{i,t})=0$$ 이때, OLS 추정량이 모수를 일관적으로 추정하려면 $$E(U_{i,t}\mathsf{X}_{i,t}) = 0$$ 이 조건이 성립하기 위해서는 $$E(\mu_{i}\mathsf{X}_{i,t}) = 0$$ $$E(\epsilon_{i,t}\mathsf{X}_{i,t})=0..

패널 회귀 분석 #1 패널 데이터와 Unobserved Heterogeneity

패널 데이터(Panel Data) 복수의 개체를 복수의 시점에서 관측한 데이터를 패널 데이터 횡단면 데이터(Cross-sectional): 복수의 개체를 하나의 시점에서 관측 시계열 데이터(Time-series): 하나의 개체를 복수의 시점에서 관측 패널회귀모델에서 변수는 2가지 차원의 변동이 가능하다. $$Y_{i,t} = \mathsf{X}_{i,t}^{T}\beta + U_{i,t}$$ $i$는 개체를, $t$는 시점을 나타내는 변수 반면 횡단면 혹은 시계열 데이터에서는 다음과 같은 회귀식 $$Y_{i} = \mathsf{X}_{i}^{T}\beta + U_{i}$$ Pooled OLS 패널데이터로 회귀분석을 실시하는 가장 단순한 방법은 패널의 구조를 무시하고 그냥 횡단면 데이터처럼 취급하여 OLS..