GLS 2

계량경제학 #9 자기상관 하에서의 선형회귀 모형 (2): HAC 추정량과 GLS

4. 오차항이 시계열적 상관을 가지는 경우 데이터셋이 시계열 상관을 가질 때, 오차항도 마찬가지로 시계열 상관을 갖는다고 하자. 이 경우에도 여전히 OLS 추정량은 Consistency를 만족한다. 이 시리즈에서 계속 얘기하듯이, 독립변수가 내생적이지만 않으면, OLS 추정량에는 그렇게 치명적인 문제(비일치성)는 없다. $$\hat{\beta}_{n} \rightarrow^{a.s.} \beta _{*}$$ 다만 OLS 추정량의 Asymptotic 분포를 구하기 위해서 추정량의 분산을 다르게 정의한다. $$\sqrt{n}(\hat{\beta}_{n} - \beta_{*}) \sim ^{A} N(0, E[\mathsf{X}_{t} \mathsf{X}_{t}^{T}]^{-1}BE[\mathsf{X}_{t} ..

계량경제학 #3 이분산 가정 하에서 OLS: HC 추정량과 FGLS

1. Heteroskedasticity 동분산성(Homoskedasticity)은 오차의 조건부 분산이 상수라는 것을 의미한다. $$E(U_{t}^{2}|\mathsf{X}_{t}) = \sigma_{*}^{2}$$ 독립변수 벡터의 조건부 평균은 독립변수 벡터의 함수이다. 따라서 동분산 가정은 오차의 조건부 분산이 독립변수 값에 따라 변화하지 않는다는 것을 의미한다. 만약 오차의 조건부 분산이 독립변수 값에 따라 변화한다면, 이분산성(Heteroskedasticity)이 존재한다고 말한다. 2. 모형의 가정 기본적으로 CLM의 가정과 동일하지만, 동분산성 가정만 제외한다. Asymptotic Theory의 세계를 다루고 있으므로, 정규성 가정도 불필요하다. 1) IID: Independently & Id..